B cell receptor & B cell development

Yuqing Shen

Department of Pathogen Biology and Immunology Medical School, Southeast University

The discovery of B cell immunity

1954 - Bruce Glick, Ohio State University

Studies on the function of the bursa of Fabricius, a lymphoid organ in the cloacal region of the chicken

None of the bursectomised chickens made anti-Salmonella antibodies

Bursa was later found to be the organ in which antibody producing cells developed – antibody producing cells were thereafter called B cells

Mammals do not have a bursa of Fabricius

B cell development in the bone marrow

Regulates construction of an antigen receptor Ensures each cell has only one specificity Checks and disposes of self-reactive B cells Exports useful cells to the periphery Provides a site for antibody production

Bone Marrow provides a MATURATION & DIFFERENTIATION MICROENVIRONMENT for B cell development

Scheme of B Cell Development in the Bone Marrow

Bone marrow stromal cells nurture developing B cells

- 1. Specific cell-cell contacts between stromal cells and developing B cells
- 2. Secretion of cytokines by stromal cells

Stromal cell

Types of cytokines and cell-cell contacts needed at each stage of differentiation are different

Stages of B cell development

Each stage of development is defined by rearrangements of Heavy chain genes, Light chain genes, expression of surface Ig, expression of adhesion molecules and cytokine receptors.

Rearrangement of BCR

Figure 4-2 Immunobiology, 7ed. (© Garland Science 2008)

Transiently expressed when V_H - D_H - J_H - $C_H(\mu)$ is productively rearranged VpreB- λ 5, the surrogate light chain, is required for surface expression

Ligation of the pre-B cell receptor

Ligation of the pre-B cell receptor triggers entry into the cell cycle

Acquisition of antigen specificity creates a need to check for recognition of self antigens

Immature B cell

Cell surface Ig expressed Able to sense Ag environment

Can now be checked for self-reactivity

- 1. Physical removal from the repertoire
- 2. Paralysis of function
- 3. Alteration of specificity

DELETION ANERGY RECEPTOR EDITING

B cell self tolerance: clonal deletion

B cell self tolerance: anergy

Receptor editing

A rearrangement encoding a self specific receptor can be replaced

B cell self tolerance: export of self tolerant B cells

The diversity of the BCR is generated by

- Combinatorial diversity
- Junctional diversity
- Receptor editing
- Somatic hypermutation

Germline DNA		B-cell DNA		
C-region fragment	V-region fragment	C-region fragment	V-region fragment	
	-			

Figure 4-1 Immunobiology, 7ed. (© Garland Science 2008)

Figure 4-2 Immunobiology, 7ed. (© Garland Science 2008)

Number of functional gene segments in human immunoglobulin loci

Segment	Light chains		Heavy chain	
	к	λ	н	
Variable (V)	40	30	40	
Diversity (D)	0	0	25	
Joining (J)	5	4	6	

Figure 4-3 Immunobiology, 7ed. (© Garland Science 2008)

Figure 4-5 Immunobiology, 7ed. (© Garland Science 2008)

<u>RAG</u> (recombination activating gene)

<u>TdT</u> (terminal deoxynucleotidyl transferase)

Figure 4-6 Immunobiology, 7ed. (© Garland Science 2008)

Junctional diversity

Figure 4-8 part 2 of 2 Immunobiology, 7ed. (© Garland Science 2008)

Receptor editing

Somatic hypermutation

Somatic hypermutation

With the help of Tfh cell, B cell clone with high binding affinity to antigen will survive, proliferate and go through differentiation

CDR region

Maturation of Follicular Dendritic cells

Club-shaped tips of developing dendrites

Bead formation on dendrites

Filiform dendrites

Bead formation on dendrites

Association of antigen with FDC

Iccosomes: The immune complex

Control of Affinity & Affinity Maturation

Five B cell antigen receptors all specific , but with for (different affinities due to somatic hypermutation of Ig genes in the germinal centre

Only this cell, that has a high affinity for antigen can express CD40. Only this cell can receive help from T cell

Only this cell is rescued from apoptosis i.e. clonally selected

The cells with lower affinity receptors die of apoptosis by neglect

The diversity of the BCR is

	Mouse		Human			
	Н	λ	κ	н	λ	κ
Combinatorial diversity	1.4×10 ⁴	6	1.2×10 ³	1.1×10 ⁴	1.2×10 ²	2×10 ² 1
V	300	2	300	65	30	40
D	12			27		
J	4	3	4	6	4	5
Junctional Diversity	1.3×10 ⁵	18	3.6×10 ³		3×10 ⁷	
Join point change	+	+	+	+	+	+
Frame shift	+	+	+	+	+	+
N-region	+	-	-	+	-	-
Somatic hypermutation	+	+	+	+	+	+
Total		4.7×10 ⁸			~ 10 ¹⁴	

How can B cells express IgM and IgD simultaneously?

Splicing of IgM and IgD RNA

Two types of mRNA can be made simultaneously in the cell by differential usage of alternative polyadenylation sites and splicing of the RNA

Isotype switch

Figure 9-12 Immunobiology, 7ed. (© Garland Science 2008)

Take-home message

- B cells develop in adult bone marrow
- Stages of B cell differentiation are defined by Ig gene rearrangement (in variable region)
- Negative selection in the bone marrow removes B cells expressing potentially autoreactive BCRs and establishes central B cell tolerance
- BCR rearrangment happens in bone marrow before antigen encounter
- Somatic hypermutation and isotype switch occur in the germinal centers and are responsible for antibody diversification after antigen encounter
- IgM and IgD can be expressed simultaneously due to differential RNA splicing

The B cell receptor and signal transduction

Transduction of signals by the B cell receptor

The cytoplasmic domains of the Ig α and Ig β contain Immunoreceptor Tyrosine based Activation Motifs (ITAMS) - 2 tyrosine residues separated by 9-12 amino acids - **Y**XX[L/V]X₆₋₉**Y**XX[L/V]

CD79α/79β

The B cell co-receptor

The B cell co-receptor

- mlg and CD21 are cross-linked by antigen that has activated complement
- CD21 is phosphorylated and receptor-associated kinases phosphorylate CD19
- Phosphorylated CD19 activates more Src family kinases
- Ligation of the co-receptor increases B cell receptor signalling 1000 -10,000 fold

B cell activation need a second signal

Figure 9-2 Immunobiology, 7ed. (© Garland Science 2008)

Transmission of signals from the cell surface to the nucleus

- If the B cell receive signal 1 and signal 2
- Subsequent signals that transmit signals to the nucleus are common to many different types of cell.
- The ultimate goal is to activate the transcription of genes, the products of which mediate proliferation and differentiation.

Once the B cell-specific parts of the cascade are complete, signalling to the nucleus continues via three common signalling pathways via:

The mitogen-activated protein kinase (MAP kinase) pathway
Increased in intracellular Ca2+ mediated by IP₃
The activation of Protein Kinase C mediated by DAG

Simplified scheme linking antigen recognition with transcription of B cell-specific genes

MAP Kinase cascade

Small G-protein-activated MAP kinases found in all multicellular animals activation of MAP kinases ultimately leads to phosphorylation of transcription factors from the **AP-1** family such as **Fos** and **Jun**.

Increases in intracellular calcium via IP₃

IP₃, produced by PLC- γ , binds to calcium channels in the ER and releases intracellular stores of Ca⁺⁺ into the cytosol. Increased intracellular [Ca⁺⁺] activate a phosphatase, calcineurin, which in turn activates the transcription factor **NFAT**.

 Activation of Protein Kinase C family members via DAG DAG stays associated with the membrane and recruits protein kinase C family members. The PKC, serine/threonine protein kinases, ultimately activate the transcription factor NFκB

The activated transcription factors AP-1, NFAT and NFκB induce B cell proliferation, differentiation and effector mechanisms

Differentiation in the periphery

Mature peripheral B cell B cell recognises non-self antigen in periphery

Ig-secreting plasma cell

Plasma cells

Two B cell lineages

Peritoneal and pleural cavity

BCR uses a distinctive & restricted range of V regions

Recognises repeating epitope Ag such as polysaccharides

Can make Ig without T cell help

NOT part of adaptive immune response: No memory induced No increase of binding affinity No isotype switch

Comparison of B-1 and B-2 B cell properties

Property	B-1 cells	B-2 cells
V region repertoire	Restricted	Diverse
Location	Peritoneum/pleura	Everywhere
Renewal	Self renewal in situ	Bone marrow
Spontaneous Ig production	High	Low
Isotypes	IgM	IgM/G/A/D/E
Carbohydrate specificity	Yes	Rarely
Carbohydrate specificity	Yes	Rarely
Protein specificity	Rarely	Yes
Need T cell help	No	Yes
Memory development	No	<mark>Yes</mark>

T Dependent & Independent Antigens

	T Dependent Antigens	TI-1 Antigens	TI-2 Antigens
Induces response in babies	Yes	Yes	No
Induces response in athymia	No	Yes	Yes
Primes T cells	Yes	No	No
Polyclonally activates B cells	No	Yes	No
Requires repeating epitopes	No	No	Yes

TD: Activate B-1 and B-2 B cells TI-1: Activate B-1 and B-2 B cells TI-2: Activate only B-1 B cells

Examples

TD: Diptheria toxin, influenza heamagglutinin, *Mycobacterium tuberculosis*TI-1: Bacterial lipopolysaccharides (LPS), *Brucella abortis*TI-2: Pneumococcal polysaccharides, *Salmonella* polymerised flagellin

Immune effector mechanisms against extracellular pathogens & toxins NEUTRALISATION

NEUTRALISING ANTIBODIES

Effector mechanisms against extracellular pathogens OPSONISATION

Effector mechanisms against extracellular pathogens COMPLEMENT Activation

B cells can also

- ✓ Function as APC cells
- ✓ Produce cytokine to regulate immune response