

Autoimmunity & Immunodeficiency

Jun Dou(窦骏)

<u>njdoujun@seu.edu.cn</u> Building 1, Room 507

Department of School of Medicine, Southeast University

Autoimmunity

The Universe of Antigens

- The number of potential pathogens is essentially infinite.
- Contact with most of them is not predictable.
- The immune system uses a clever mechanism that has evolved to solve these problems. The cells of
 the adaptive immune system (B and T cells) have randomized antigen receptors (via VDJ and hypermutation).

The strategy is that a few (among billions) of naive B and T cells will recognize antigen and will expand in response to it. This is called *clonal selection* theory.

 The strategy carries with it a potential danger. Since antigen receptors on B and T cells are randomized, they have the potential to recognize self as well as non-self (pathogens).

Reaction against self is called *autoimmunity*.

TABLE 20-1 SOME AUTOIMMUNE DISEASES IN HUMANS

Disease	Self-antigen	Immune response
	Organ-specific autoimmune diseases	
Addison's disease	Adrenal cells	Auto-antibodies
Autoimmune hemolytic anemia	RBC membrane proteins	Auto-antibodies
Goodpasture's syndrome	Renal and lung basement membranes	Auto-antibodies
Graves' disease	Thyroid-stimulating hormone receptor	Auto-antibody (stimulating)
Hashimoto's thyroiditis	Thyroid proteins and cells	T _{DTH} cells, auto-antibodies
Idiopathic thrombocyopenia purpura	Platelet membrane proteins	Auto-antibodies
Insulin-dependent diabetes mellitus	Pancreatic beta cells	$T_{\rm DTH}$ cells, auto-antibodies
Myasthenia gravis	Acetylcholine receptors	Auto-antibody (blocking)
Myocardial infarction	Heart	Auto-antibodies
Pernicious anemia	Gastric parietal cells; intrinsic factor	Auto-antibody
Poststreptococcal	Kidney	Antigen-antibody complexes
glomerulonephritis		
Spontaneous infertility	Sperm	Auto-antibodies
	Systemic autoimmune disease	
Ankylosing spondylitis	Vertebrae	Immune complexes
Multiple sclerosis	Brain or white matter	T_{DTH} and T_{C} cells, auto-antibodies
Rheumatoid arthritis	Connective tissue, IgG	Auto-antibodies, immune complexes
Scleroderma	Nuclei, heart, lungs, gastrointestinal tract, kidney	Auto-antibodies
Sjogren's syndrome	Salivary gland, liver, kidney, thryoid	Auto-antibodies
Systemic lupus erythematosus (SLE)	DNA, nuclear protein, RBC and platelet membranes	Auto-antobidies, immune complexes

Disease	Disease mechanism	Consequence
Graves' disease	Autoantibodies against the thyroid-stimulating-hormone receptor	Hyperthyroidism: overproduction of thyroid hormones
Rheumatoid arthritis	Autoreactive T cells against antigens of joint synovium	Joint inflammation and destruction causing arthritis
Hashimoto's thyroiditis	Autoantibodies and autoreactive T cells against thyroid antigens	Destruction of thyroid tissue leading to hypothyroidism: underproduction of thyroid hormones
Type 1 diabetes (insulin-dependent diabetes mellitus, IDDM)	Autoreactive T cells against pancreatic islet cell antigens	Destruction of pancreatic islet β cells leading to non-production of insulin
Multiple sclerosis	Autoreactive T cells against brain antigens	Formation of sclerotic plaques in brain with destruction of myelin sheaths surrounding nerve cell axons, leading to muscle weakness, ataxia, and other symptoms
Systemic lupus erythematosus	Autoantibodies and autoreactive T cells against DNA, chromatin proteins, and ubiquitous ribonucleoprotein antigens	Glomerulonephritis, vasculitis, rash
Sjögren's syndrome	Autoantibodies and autoreactive T cells against ribonucleoprotein antigens	Lymphocyte infiltration of exocrine glands, leading to dry eyes and/or dry mouth; other organs may be involved, leading to systemic disease

Mechanisms of Tolerance Induction

Organisms that employ the randomization strategy and do nothing to reduce the number of autoreactive cells in the immune repertoire would be reckless and would be unlikely to survive in the Darwinian sense.

Two classes of tolerance induction mechanisms are used by both B and T cells. *Central tolerance* operates on <u>immature</u> T and B cells

Thymus for T cells

♦ Bone marrow for B cells

Peripheral tolerance provides a backup to central tolerance and operates on mature lymphocytes.

Existence of autoimmune reactions shows that tolerance induction is not perfect

L	Layers of self-tolerance			
Type of tolerance	Mechanism	Site of action		
Central tolerance	Deletion Editing	Thymus Bone marrow		
Antigen segregation	Physical barrier to self-antigen access to lymphoid system	Peripheral organs (e.g. thyroid, pancreas)		
Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	Secondary lymphoid tissue		
Regulatory cells	Suppression by cytokines, intercellular signals	Secondary lymphoid tissue and sites of inflammation		
Cytokine deviation	Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion	Secondary lymphoid tissue and sites of inflammation		
Clonal deletion	Apoptosis post-activation	Secondary lymphoid tissue and sites of inflammation		

Figure 14-2 Immunobiology 7ed (© Garland Science 2008)

Susceptibility to Autoimmune Diseases: Contribution of MHC and Gender

	Disease	HLA allele	Relative Risk	Sex Ratio (F/M)
	Ankyloi ng spondyliti s	B27	87.4	0.3
	Acute anterior uveitis	B27	10.04	<0.5
	Goodpasture <u>捐</u> Syndrome	DR2	15.9	?
	Multiple Sclerosis	DR2	4.8	10
	Graves?Disease	DR3	3.7	4-5
	Myasthenia gravis	DR3	2.5	~1
	Lupus (SLE)	DR3	5.8	10-20
	IDDM	DR3 and DR4	3.2	~1
	Rhumatoi d arthritis	DR4	4.2	3
	Pemphigus vulgaris	DR4	14.4	?
202	Hashimoto 抯 h yroditis	DR5	3.2	~1

Mechanisms for inducing autoimmune responses.

- Sympathetic opthalmia
- The eye is not normally "sampled" by T cells
- Trauma to the eye can release antigens unique to the eye (not presented in the thymus)
- These antigens can be brought to lymph nodes where they activate T cells.
- Primed T cells can traffic through privileged sites and cause tissue damage if they recognize ^{2020/5/14} antigen

Release of Sequestered Antigen from Immunoprivileged Site

Type II Autoimmune Diseases: Antibodies to cell surface or matrix proteins

Syndrome	Autoantigen	Consequence
Hemolytic Anemia	Rh blood group, l antigen	Destruction of RBC by complement and phagocyt es; anemia
Thrombocytopenia purpura	Plate let integ rin gpIlb:IIIa	Abnormal bleeding
Goodpasture <u>捐</u> Syndrome	Non-collagenous domain of basement membrane collagentypeIV	Vasculitis, renal failure
Pemphigus vulgaris	Epidermal cadherin	Blistering of skin
Acute rheumatic fever	Streptococcal cell wall antigens, ant ibodies cross-react with cardiac muscle	Arthritis, myocarditis, scarring of heart valves

Type III - Immune Complex Disease

Syndrome	Autoantigen	Consequence
Post-streptococcal glomerulonephritis	Streptococc al ant igen	Transient nephrotic syndrome
Polyarteritis nodosa	Hepatitis B surface an tigen	System ic vasculitis
Systemic lupus erythematosus (SLE)	DNA, histon es, ribosomes, etc.	Glomerulonephritis, vasculitis, arthritis
2020/5/14		13

Type IV - T cell mediated disease

<u>Syndrome</u>	<u>Autoantigen</u>	<u>Consequence</u>
Insuli n-dependent dia betes mellit us	Unknown panc reatic β cell antigen (GAD?)	β-cell destruction
Rheumatoid a rthritis	Unknown synovial joint antigen	Joint inflam mation and destruction
Experimental autoimmune	Mylein basic protein	Brain invasion by CD4 T cells,
encephalomyelit is (EAE),	(MBP), proteoli pid protein	paralysi s
multiple sclerosis	(PLP)	

Graves' Disease: A type II hypersensitivity reaction involving receptor binding

 Antibodies to thyroid stimulating
 hormone receptor stimulate thyroid
 hormone
 production. Block
 of TSH feedback
 inhibition

 Result is excessive thyroid hormone production

Myasthenia Gravis: A type II hypersensitivity reaction involving receptor binding

Autoantibodies to chain of acetylcholine receptor found at neuromuscular junction block neuromuscular transmission. Antibodies also drive degradation of AChR. Patients develop progressive weakness and eventually die.

Figure 14-15 Immunobiology, 7ed. (© Garland Science 2008)

Figure 14-17 Immunobiology, 7ed. (© Garland Science 2008)

Systemic Lupus Erythematosus (SLE)

Multiple B cells with different specificities can receive help from a single autoreactive T cell when the B cells recognize constituents of large complexes.

Insulin Dependent Diabetes Mellitus

- T cell mediated destruction of cells in Islets of Langerhans in pancreas
- Staining for insulin and glucagon
- T cell infiltrates CD4 and CD8 cells involved antigens not known

Susceptibility to IDDM is Associated with Single Amino Acid in HLA-DQ1

Associated with resistance to IDDM

Associated with susceptibility to IDDM

Treatment of Autoimmune Disease

- Nonspecific suppression of Immune system
 - Corticosteroids, etc.
 - cyclosporin etc.
 - Removal of thymus,
 - Plasma pheresis
- Experimental approaches
 - ♦ T cell vaccination
 - Peptide blockade of MHC
 - Monoclonal antibody treatment (e.g. anti-CD4, Anti-TCR)
 - Tolerance induction by oral tolerance
 - Cytokines e.g. IFN-beta for MS

Figure 14-10 Immunobiology, 7ed. (© Garland Science 2008)

TABLE 20-2 EXPERIMENTAL ANIMAL MODELS OF AUTOIMMUNE DISEASES

	Possible human		Disease transferred
Animal model	disease counterpart	Inducing antigen	by T cells
	Spontaneous autoim	mune disease	
Nonobese diabetic (NOD) mouse	Insulin-dependent diabetes mellitus (IDDM)	Unknown	Yes
(NZB \times NZW) $F_{\rm l}$ mouse	Systemic lupus erythematosus (SLE)	Unknown	Yes
Obese-strain chicken	Hashimoto's thyroiditis	Thyroglobulin	Yes
	Experimentally induced au	toimmune disease*	
Experimental autoimmune myasthenia gravis (EAMG)	Myasthenia gravis	Acetylcholine receptor	Yes
Experimental autoimmune encephalomyelitis (EAE)	Multiple sclerosis (MS)	Myelin basic protein (MBP); proteolipid protein (PLP)	Yes
Autoimmune arthritis (AA)	Rheumatoid arthritis	M. tuberculosis (proteoglycans)	Yes
Experimental autoimmune thyroiditis (EAT)	Hashimoto's thyroiditis	Thyroglobulin	Yes

*These diseases can be induced by injecting appropriate animals with the indicated antigen in complete Freund's adjuvant. Except for autoimmune arthritis, the antigens used correspond to the self-antigens associated with the human-disease counterpart. Rheumatoid arthritis involves reaction to proteoglycans, which are self-antigens associated with connective tissue.

Figure 14-13 part 2 of 2 Immunobiology, 7ed. (© Garland Science 2008)

SUMMARY

1. Human autoimmune diseases can be divided into organ-specific and systemic diseases. The organ-specific diseases involve an autoimmune response directed primarily against a single organ or gland. In contrast, the systemic diseases are directed against a broad spectrum of tissues and have manifestations in a variety of organs.

2. There are both spontaneous and experimental animal models for autoimmune diseases. Spontaneous models include a disease in NZB and (NZB \times NZW) F₁ mice that parallels systemic lupus erythematosus, a thyroiditis seen in Obese-strain chickens that parallels Hashimoto's thyroiditis, and a diabetes in NOD mice that resembles human insulin-dependent diabetes mellitus. Several experimental animal models have been developed by immunizing animals with self-antigens in the presence of adjuvant. In experimental autoimmune myasthenia gravis (EAMG), the antigen is the acetylcholine receptor; in experimental autoimmune encephalomyelitis (EAE), the antigen is myelin basic protein; in experimental autoimmune thyroiditis (EAT), the antigen is thyroglobulin. 3. The experimental autoimmune animal models have revealed a central role for the CD4⁺ T_H cell in the development of autoimmunity. In each of the experimentally induced autoimmune diseases, autoimmune T-cell clones can be isolated that induce the autoimmune disease in normal animals. The MHC haplotype of the experimental animal determines the ability to present various autoantigens to T_H cells. In addition, some autoimmune animals utilize a restricted repertoire of TCR genes, which may predispose the animal toward T-cell activity in response to a given selfantigen.

4. A variety of mechanisms have been proposed for autoimmunity, including release of sequestered antigens, molecular mimicry, inappropriate class II MHC expression on cells, a cytokine imbalance, a dysfunction of the idiotype network, a dysfunction of T-cellmediated suppression, and polyclonal activation of lymphocytes. Evidence exists for each of these mechanisms, reflecting the many different pathways leading to autoimmune reactions.

5. Current therapies for autoimmune diseases include treatment with immunosuppressive drugs, thymectomy, and plasmapheresis for diseases involving immune complexes. These therapies, which are relatively nonspecific, may have significant side effects. Several more specific approaches have shown some success in various animal models for autoimmune diseases. These include vaccination with T cells specific for a given autoantigen, administration of synthetic blocking peptides that compete with autoantigen for binding to MHC molecules, treatment with monoclonal antibodies that react with some component specifically involved in an autoimmune reaction, and induction of tolerance to autoantigens by administering them orally.

Concepts:

- 1. Graves disease and Myasthenia Gravis
- 2. Goodpasture's syndrome
 - **3.** System lupus erythematosus (SLE)
 - 4. Rheumatoid arthritis (RA)
- 5. Multiple sclerosis (MS)
- 6. Insuline-dependent diabetes mellitus (IDDM)

Questions:

- 1. Define autoimmunity. Discuss the postulation that could explain autoimmune responses, please !
- 2. What is autoimmune disease? Discuss the orgain specific autoimmune disease, please !

TABLE 19-1 SOME PRIMARY HUMAN IMMUNODEFICIENCY DISEASES AND UNDERLYING GENETIC DEFECTS

Immunodeficiency disease	Specific defect	Impaired function	Inheritance mode*	Chromosomal defect
Severe combined immunodeficiency (SCID)	RAG-1/RAG-2 deficiency	No TCR or Ig gene rearrangement	AR	11p13
2049474510000	ADA deficiency	Toxic metabolite in T	(AR	20q13
	PNP deficiency	and B cells	AR	14q13
	JAK-3 deficiency	Defective signals from	AR	19p13
	IL-2Ry-deficiency	IL-2, 4, 7, 9, 15	{ XL	Xq13
	ZAP-70 deficiency	Defective signal from TCR	AR	2q12
Bare lymphocyte syndrome	Defect in MHC class II gene promoter	No class II MHC molecules	AR	16p13
Wiskott-Aldrich syndrome (WAS)	Cytoskeletal protein (CD43)	Defective T cells and platelets	XL	Xp11
Interferon gamma receptor	IFN-y-receptor defect	Impaired immunity to mycobacteria	AR	6q23
DiGeorge syndrome	Thymic aplasia	T- and B-cell development	AD	22q11
Ataxia telangiectasia	Defective cell-cycle kinase	Low IgA, IgE	AR	11q22
Gammaglobulinemias	X-linked agammaglobulinemia	Bruton's tyrosine kinase (Btk); no mature B cells	XL	Xq21
	X-linked hyper-IgM syndrome	Defective CD40 ligand	XL	Xq26
	Common variable immunodeficiency	Low IgG, IgA; variable IgM	Compl	ex
	Selective IgA deficiency	Low or no IgA	Compl	ex
Chronic granulomatous	Cyt p91 ^{phox}	Nie auf dation konst	ſ XL	Xp21
disease	Cyt p67 ^{phox} Cyt p22 ^{phox}	for bacterial killing	AR	1q25 16q24
Chediak-Higashi syndrome	Defective intracellular transport protein (LYST)	Inability to lyse bacteria	AR	1942
Leukocyte-adhesion defect	Defective integrin β2 (CD18)	Leukocyte extravasation	AR	21q22

TABLE 19-2 PROPERTIES OF INTEGRIN MOLECULES THAT ARE ABSENT IN LEUKOCYTE-ADHESION DEFICIENCY

	Integrin molecules*				
Property	LFA-1	CR3	CR4		
CD designation	CD11a/CD18	CD11b/CD18	CD11c/CD18		
Subunit composition	αLβ2	αΜβ2	αΧβ2		
Subunit molecular mass (kDa) α chain β chain	175,000 95,000	165,000 95,000	150,000 95,000		
Cellular expression Lymphocytes Monocytes Macrophages Granulocytes Natural killer cells		Monocytes Monocyt Macrophages Macroph Granulocytes Granulo Natural killer cells			
Ligand	ICAM-1 ICAM-2	C3bi	C3bi		
Functions inhibited with monoclonal antibody	Extravasation CTL killing T-B conjugate formation ADCC	Opsonization Granulocyte adherence, aggregation, and chemotaxis ADCC	Granulocyte adherence and aggregation		

*CR3 = type 3 complement receptor, also known as Mac-1; CR4 = type 4 complement receptor, also known as gp150/90. LFA-1, CR3, and CR4 are heterodimers containing a common β chain but different α chains designated L, M, and X, respectively.

		Evaluation	Evaluation of the cellular components of the human immune system				
		B cells			T cells	Ph	agocytes
	Normal numbers (x10 ⁹ per liter of blood)	Approximatel	y 0.3	(Fotal 1.0-2.5 CD4 0.5-1.6 CD8 0.3-0.9	Monocy Polymorpho Neutroj Eosinop Baso	rtes 0.15–0.6 nuclear leukocytes phils 3.00–5.5 hils 0.05–0.25 phils 0.02
	Measurement of function <i>in vivo</i>	Serum Ig le Specific anti levels	evels body		Skin te <i>s</i> t		_
	Measurement of function <i>in vitro</i>	Induced antibody prod in response pokeweed mi	uction e to togen	T-c ir phy or t	cell proliferation n response to rtohemagglutinin o tetanus toxoid	Ph Nitro blue Intrac of	agocytosis tetrazolium uptake xellular killing i bacteria
	Specific defects	See Fig. 1	See Fig. 11.8 See Fig. 11.8			Se	e Fig. 11.8
		Evaluation	of the h	numora	l components o	f the human in	nmune system
			In	nmunog	lobulins		Complement
	Component	lgG	lgN	1	lgA	lgE	
2020/5/14	Normal levels	600-1400 mgdi ⁻¹	40–345 i	ng di ⁻¹	60-380 mgdl ⁻¹	0-200 IUmi ⁻¹	CH ₅₀ of 125–300 IU ml ⁻¹

Immunoglobulin Deficiencies: B cell defects

 X-linked agammaglobulinemia (XLA) Mutation in btk; progression through pre-B development (Bruton's Agammaglobulinemia)

- IgA deficiency
 - Frequency 1:800
 - Increase frequency in patients with chronic lung disease;

Consistent with role of IgA at surfacesNo know specific susceptibilities

Common variable immunodeficiency
Deficiency in IgA, IgG
Susceptible to extracellular bacterial infections
Treatment with antibiotics, passive Ig transfer

Immunoglobulin Deficiencies: T cell defects

X-linked hyper IgM syndrome

- Normal B cell development
- High serum levels of IgM
- Limited IgM responses against T-dependent antigens
- Extremely limited production of classes other
- than IgM, IgD; susceptible to extracellular bacteria such as *Pneumocystis carinii*.
- Defect in CD40L on activated T cells

CD40L essential for class switch

Phagocytic cell defects Adhesion molecule defects ♦ Integrins common 2 subunit (CD18) **CD11a/CD18 (LFA-1) CD11b/CD18 (Mac-1/CR3) CD11c/CD18 (CR4)** Impaired migraiton across blood vessel walls **Cannot get to sites of infection** Effector mechanism defects ♦ CGD. chronic granulomatours disease ♦ Defective superoxide production Other enzyme deficiencies **Susceptibility** to intra-and extracellular bacterial 2020/5/1infections

Complement Deficiencies

Defects in several components of complement pathway lead to susceptibility to bacterial infections, especially *Neisseria*, the cause of meningitis and 2020/5/140rrhea.

SCID: Severe Combined Immunodeficiencies

Generally T cell defects

 Highlights role of T cells in regulating/coordinating immune responses

X-linked

- ♦ Mutation in IL2R chain
- Nucleotide degradation
 - ADA adenosine deaminase
 - PNP purine nucleotide phosphorylase
 - Both give rise to accumulation of nucleotide metabolites that are particularly toxic to T cells

Bare lymphocyte syndrome Defect in class II expression Mutations in one of at least 4 genes regulating class II expression **Impaired CD4+ T cell development ***Normal CD8+ T cell development ◆ Illustrates central role of CD4+ T cells Defects of thymic epithelium DiGeorge syndrome ♦ Nude mice

Clinical focus: Primary T-cell Deficiency DiGeorge syndrome (Angelo DiGeorge, 1965) * arises from a defect in thymus embryogenesis * affecting 1-5 per 100, 000 of the population

FIGURE 19-4 A child with DiGeorge syndrome showing characteristic dysplasia of ears and mouth and abnormally long distance between the eyes. [R. Kretschmer et al., 1968, New Engl. J. Med. 279:1295; photograph courtesy of F. S. Rosen.]

图 19.10 DiGeorge 畸形 注意眼距增宽,双耳下移, 鼻唇沟缩短。还可能有先天性心血管系统畸形。

FIGURE 22-3 Chronic cutaneous candidiasis in a boy with defective cell-mediated immunity. [From R. J. Schlegel et al., 1970, *Pediatrics* **45**:926.]

Fig. 19.12 Hereditary angioneurotic oedema. This clinical photograph shows the transient localized swelling which occurs in this condition.

Acquired Immunodeficiency

- Nutrition
- **Behavior**
- **T**oxins
- Drugs
- Medical practice
- Cancer
- Infectious disease
- Other

Immunodeficiency and Infectious Disease

- Infectious disease is (by definition) suppression or subversion of immune response.
- Many pathogens have ways to down regulate immune defense reactions.
- Virulence factors expressed by microbes can suppress immune responses.

Just a few Examples:

- HIV kills CD4⁺ cells that participate in immune response.
- ◆ EBV expresses a cytokine-like molecule that disregulates.
- ♦ Measle virus depresses IL-12 production.
- Adenovirus and others inhibit MHC expression.
- Toxins produced by bacteria such as Listeria inhibit antigen processing.
- ♦ Herpes virus hides in DNA.
- Streptococcus inhibits phagocytosis.

Human immunodeficiency virus (HIV)

(b)

(a) Infection of target cell

- 3 Nucleocapsid containing viral genome and enzymes enters cells.
- 4) Viral genome and enzymes are released following removal of core proteins.
- (5) Viral reverse transcriptase catalyzes reverse transcription of ssRNA, forming RNA-DNA hybrids.
- Original RNA template is partially degraded by ribonuclease H, followed by synthesis of second DNA strand to yield HIV dsDNA.
- (7) The viral dsDNA is then translocated to the nucleus and integrated into the host chromosomal DNA by the viral integrase enzyme.

(b) Activation of provirus

- Transcription factors stimulate transcription of proviral DNA into genomic ssRNA and, after processing, several mRNAs.
- Viral RNA is exported to cytoplasm.
- 3a) Host-cell ribosomes catalyze synthesis of viral precursor proteins.
- (3b) Viral protease cleaves precursors into viral proteins.
- 4 HIV ssRNA and proteins assemble beneath the host-cell membrane, into which gp41 and gp120 are inserted.
- (5a) The membrane buds out, forming the viral envelope.
- (5b) Released viral particles complete maturation; incorporated precursor proteins are cleaved by viral protease present in viral particles.

Viral load in blood (HIV RNA copies/ml plasma)

2020/5/14

Clinical categories* CD4⁺ T-cell count в Ċ. A. ≥500/µl A1 B1 Cl 200-499/µl A2 **B2** C2 <200µl A3 **B3** C3 Classification of AIDS indicator disease Category A Category C Asymptomatic: no symptoms at the time Candidiasis of bronchi, tracheae, or lungs of HIV infection Candidiasis, esophageal Acute primary infection: glandular fever-like Cervical cancer (invasive) illness lasting a few weeks at the time of Coccidioidomycosis, disseminated or extrapulmonary infection Cryptococcosis, extrapulmonary Persistent generalized lymphadenopathy (PGL): Cryptosporidiosis, chronic intestinal (>1 month duration) lymph-node enlargement persisting for 3 or more Cytomegalovirus disease (other than liver, spleen, or months with no evidence of infection nodes) Cytomegalovirus retinitis (with loss of vision) Encephalopathy, HIV-related Herpes simplex: chronic ulcer(s) (>1 month duration), Category B bronchitis, pneumonitis, or esophagitis Bacillary angiomatosis Histoplasmosis, disseminated or extrapulmonary Candidiasis, oropharyngeal (thrush) Isosporiasis, chronic intestinal (>1 month duration) Candidiasis, vulvovaginal: persistent, frequent, Kaposi's sarcoma or poorly responsive to therapy Lymphoma, Burkitt's Cervical dysplasia (moderate or severe)/cervical Lymphoma, immunoblastic carcinoma in situ Lymphoma, primary of brain Constitutional symptoms such as fever Mycobacterium avium complex or M. Kansasii, (>38.5°C) or diarrhea lasting >1 month disseminated or extrapulmonary Hairy leukoplakia, oral Mycobacterium tuberculosis, any site Herpes zoster (shingles) involving at least two Mycobacterium, other or unidentified species, distinct episodes or more than one dermatome disseminated or extrapulmonary Idiopathic thrombocytopenic purpura Pneumocystis carinii pneumonia Listeriosis Progressive multifocal leukoencephalopathy Pelvic inflammatory disease, particularly by Salmonella septicemia (recurrent) tubo-ovarian abscess Toxoplasmosis of brain

Wasting syndrome due to HIV

TABLE 19-3 CLINICAL DIAGNOSIS OF HIV-INFECTED INDIVIDUALS

2020/5/

Peripheral neuropathy

TABLE 19-4 IMMUNOLOGIC ABNORMALITIES ASSOCIATED WITH HIV INFECTION

Stage of infection Typical abnormalities observed

	Lymph node structure
Early	Infection and destruction of dendritic cells; some structural disruption
Late	Extensive damage and tissue necrosis; loss of folicular dendritic cells and germinal centers; inability to trap antigens or support activation of T and B cells
	T helper (T _H) cells
Early	No in vitro proliferative response to specific antigen
Late	Decrease in T _H -cell numbers and corresponding helper activities; no response to T-cell mitogens or alloantigen
	Antibody production
Early	Enhanced nonspecific IgG and IgA production but reduced IgM synthesis
Late	No proliferation of B cells specific for HIV-1: no detectable anti-HIV antibodies in some patients
	Cytokine production
Early	Increased levels of some cytokines
Late	Shift in cytokine production from T _H 1 subset to T _H 2 subset
	Delayed-type hypersensitivity
Early	Highly significant reduction in proliferative capacity of T _{DTH} cells and reduction in skin-test reactivity
Late	Elimination of DTH response; complete absence of skin-test reactivity
	T cytotoxic (T _c) cells
Early	Normal reactivity
Late	Reduction but not elimination of CTL activity due to impaired ability to generate CTLs from T _C cells

HAART: highly active antiretroviral therapy. **Two nucleoside** analogs and one protease inhibitor.

2020/5/14

TABLE 19-5 SOME ANTI-HIV DRUGS IN CLINICAL USE

Generic name (other names)	Typical dosage	Some potential side effects
	Reverse transcriptase inhibito	ors: Nucleoside analog
Didanosine (Videx, ddl)	2 pills, 2 times a day on empty stomach	Nausea, diarrhea, pancreatic inflammation, peripheral neuropathy
Lamivudine (Epivir, 3TC)	1 pill, 2 times a day	Usually none
Stavudine (Zerit, d4T)	1 pill, 2 times a day	Peripheral neuropathy
Zalcitabine (HIVID, ddC)	1 pill, 3 times a day	Peripheral neuropathy, mouth inflammation, pancreatic inflammation
Zidovudine (Retrovir, AZT)	1 pill, 2 times a day	Nausea, headache, anemia, neutropenia (reduced levels of neutrophil white blood cells), weakness, insomnia
Pill containing lamivudine and zidovudine (Combivir)	1 pill, 2 times a day	Same as for zidovudine
	Reverse transcriptase inhibitors:	Nonnucleoside analogues
Delavirdine (Rescriptor)	4 pills, 3 times a day (mixed into water); not within an hour of antacids or didanosine	Rash, headache, hepatitis
Nevirapine (Viramune)	1 pill, 2 times a day	Rash, hepatitis
	Protease inhi	bitors
Indinavir (Crixivan)	2 pills, 3 times a day on empty stomach or with a low-fat snack and not within 2 hours of didanosine	Kidney stones, nausea, headache, blurred vision, dizziness, rash, metallic taste in mouth, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance
Nelfinavir (Viracept)	3 pills, 3 times a day with some food	Diarrhea, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance
Ritonavir (Norvir)	6 pills, 2 times a day (or 4 pills, 2 times a day if taken with saquinavir) with food and not within 2 hours of didanosine	Nausea, vomiting, diarrhea, abdominal pain, headache, prickling sensation in skin, hepatitis, weakness, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance
Saquinavir (Invirase, a hard-gel capsule; Fortovase, a soft- gel capsule)	6 pills, 3 times a day (or 2 pills, 2 times a day if taken with ritonavir) with a large meal	Nausea, diarrhea, headache, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance

SOURCE: JG Bartlett and RD Moore, 1998, Improving HIV therapy, Sci. Am. 279(1):87.

Summary

1. The immune system makes mistakes. 2. Anything that can go wrong will go wrong. 3. AIDS is a challenge.

Concepts:

- **1. Immunodeficiency disease (IDD)**
- 2. Congenital immunodeficiency disease (CIDD)
- 3. X-linked Agammaglobulinemia (Bruton's Agammaglobulinemia)
- 4. DiGeorge syndrome
- **5. Severe Combined Immunodeficiencies(SCID)**
 - 6. Human immunodeficiency virus (HIV)

Questions:

- **1. Discuss the pathogenesis and immune response of HIV infection (AIDS), please !**
- 2. Discuss the mechanism of CD4+T cell depletion and dysfunction HIV infection, please !